| Test | Score | M | SD |
|---|---|---|---|
| geniustest.com | 80 | 70 | 5 |
| mensa.lu | 40 | 20 | 10 |
\(z = \dfrac{X - \mu}\sigma\) or… \(z = \dfrac{X - M}s\)
| Test | Score | M | SD |
|---|---|---|---|
| geniustest.com | 80 | 70 | 5 |
| mensa.lu | 40 | 20 | 10 |
\(z = \dfrac{80-70}{5} = \dfrac{10}{5} = 2\)
\(z = \dfrac{40-20}{10} = \dfrac{20}{10} = 2\)
\(z = \dfrac{X - \mu}\sigma\) so… \(X = \mu + z\sigma\)
\[\begin{align} X & = \mu + z\sigma \\ & = 70 + 2*5 \\ & = 70 + 10 \\ & = 80 \end{align}\]
\[\begin{align} X & = \mu + z\sigma \\ & = 20 + 2*10 \\ & = 20 + 20 \\ & = 40 \end{align}\]
Original
2a. Set SD
2b. Set \(M\)
geniustest
mensa.lu

\(\begin{align} z & = \dfrac{X - \mu}{\sigma} \\ & = \dfrac{159 - 284}{50} = -2.5 \end{align}\)
\(\begin{align} z & = \dfrac{X - M}{s} \\ & = \dfrac{15.49 - 30.25}{14.89} \\ & = -0.99 \end{align}\)
For a population with \(\mu = 50\) and \(\sigma = 10\), what is the \(X\) value corresponding to \(z = 0.4\)?
In a sample distribution, \(X = 56\) corresponds to \(z = 1.00\), and \(X = 47\) corresponds to \(z = -0.50\). Find the mean and standard deviation for the sample.
w = 1050
h = 500
xScale = d3.scaleLinear()
.domain([-3, 3])
.range([0, w])
yScale = d3.scaleLinear()
.domain([0, 0.42])
.range([h, 0])
line = d3.line()
.x(d => xScale(d.value))
.y(d => yScale(d.density))
chart = {
const svg = d3.select("#cover-container")
.append("svg")
.attr("width", w).attr("height", h)
const g = svg.selectAll("g")
.data([0,1,2,3])
.enter()
.append("g")
.append("path").attr("id", d => "path" + d)
.attr("d", line(data))
svg.select("#path0").attr("class", "invertable")
.style("fill", "none")
.style("stroke", "black")
.style("stroke-width", 2)
svg.selectAll("#path1, #path2, #path3").attr("class", "fill")
.style("fill", "thistle")
.style("fill-opacity", 0)
svg.select("#path1").attr("clip-path", "url(#clip1)")
svg.select("#path2").attr("clip-path", "url(#clip2)")
svg.select("#path3").attr("clip-path", "url(#clip3)")
var Gen = d3.line()
.x(d => xScale(d.value))
.y(d => yScale(d.density))
const clipPaths = svg.append("g")
clipPaths.append("clipPath").attr("id", "clip1")
.append("path")
.attr("d", Gen([{value: -3, density: 0},
{value: -3, density: 1},
{value: 3, density: 1},
{value: 3, density: 0},
{value: -3, density: 0}]))
clipPaths.append("clipPath").attr("id", "clip2")
.append("path")
.attr("d", Gen([{value: -2, density: 0},
{value: -2, density: 1},
{value: 2, density: 1},
{value: 2, density: 0},
{value: -2, density: 0}]))
clipPaths.append("clipPath").attr("id", "clip3")
.append("path")
.attr("d", Gen([{value: -1, density: 0},
{value: -1, density: 1},
{value: 1, density: 1},
{value: 1, density: 0},
{value: -1, density: 0}]))
svg.selectAll(".fill")
.data([0,1,2])
.transition().duration(3000).delay(d => d * 1000)
.style("fill-opacity", 0.4)
}stopwatch = {
const w = 200
const h = 215
const svg = d3.select("#stopwatch-container")
.append("svg").attr("width", w).attr("height", h)
svg.append("circle")
.attr("r", w/2)
.attr("fill", "lightblue")
.attr("transform", "translate(100, 110)")
svg.append("circle")
.attr("r", 10)
.attr("fill", "white")
.attr("transform", "translate(100, 110)")
svg.append("rect")
.attr("rx", 5)
.attr("ry", 5)
.attr("width", 30)
.attr("height", 10)
.attr("fill", "lightblue")
.attr("transform", "translate(85, 0)")
const hand = svg.append("line")
.attr("y1", 15)
.attr("y2", -85)
.attr("stroke", "white")
.attr("stroke-width", 5)
.attr("transform", "translate(100, 110)")
function rotateHand() {
var i = d3.interpolate(0, 360);
return function(t) {
return "translate(100, 110) rotate(" + i(t) + ")";
}
}
function anim() {
hand
.transition().duration(5000).ease(d3.easeLinear)
.attrTween("transform", rotateHand)
.on("end", anim)
}
anim();
}